Răspuns :
[tex]\it\dfrac{2\sqrt3}{2\sqrt3+3}=\dfrac{2\sqrt3}{\sqrt3(2+\sqrt3)}=\dfrac{2}{2+\sqrt3}=4-2\sqrt3\\ \\ \\ \dfrac{6}{3\sqrt3+5}=\dfrac{18\sqrt3-30}{2}=9\sqrt3-15\\ \\ \\4-2\sqrt3-(9\sqrt3-15)=4-2\sqrt3-9\sqrt3+15=-11\sqrt3+19\ \ \ \ \ (*)[/tex]
[tex]\it \dfrac{1}{3-2\sqrt3}-\dfrac{\sqrt3}{3}=\dfrac{3+2\sqrt3}{-3}-\dfrac{\sqrt3}{3}=\dfrac{-3-2\sqrt3-\sqrt3}{3}=-\sqrt3-1\ \ \ \ (**)[/tex]
[tex]\it\dfrac{11\sqrt3-19}{\sqrt3+1}=\dfrac{33-11\sqrt3-19\sqrt3+19}{2}=\dfrac{52-30\sqrt3}{2}=26-15\sqrt3[/tex]