Răspuns :
din greseala am calculat f'(1) in loc de f'(-1)
f'(-1)=5×1-12×1= 5-12= -7
Răspuns:
f(-1)= (-1)⁵-4(-1)³+2=-1+4+2=5
f(x)-f(-1) = x⁵-4x³+2-5 = x⁵-4x³-3[tex]\lim_{n \to \(-1)} \frac{x^{5} -4x^{3}-3}{x+1} = 0/0 =\lim_{n \to \(-1)} \frac{(x^{5} -4x^{3}-3)'}{(x+1)'} = \lim_{n \to \(-1)} \frac{5x^{4} -3*4x^{2}-0}{1+0} =[/tex]
= 5(-1)⁴-12(-1)² = 5-12 = -7