efectuati cmmdc (750,630)

Răspuns :

750=2×5²×3

630=3²×7×2×5

___________

cmmdc=3×2×5

=6×5

=30

Răspuns:

Buna!

Cmmdc (700; 630) = ?

Metoda 1. Descompunerea numerelor întregi în factori primi:

Descompunerea în factori primi a unui număr înseamnă găsirea numerelor prime care înmulțite dau ca rezultat acel număr.

700 = 22 × 52 × 7;

700 nu e prim, e număr compus;

630 = 2 × 32 × 5 × 7;

630 nu e prim, e număr compus;

* Numerele pozitive întregi care nu se divid decât cu ele însele și cu 1, se numesc numere prime. Un număr prim are doar doi divizori: 1 și el însuși.

* Un număr compus e un întreg pozitiv care are cel puțin un divizor diferit de 1 și de numărul însuși.  

>> Descompunerea numerelor întregi în factori primi  

Calculează cel mai mare divizor comun, cmmdc:

Se înmulțesc toți factorii primi comuni, la puterile cele mai mici.

cmmdc (700; 630) = 2 × 5 × 7  

cmmdc (700; 630) = 2 × 5 × 7 = 70;

Numerele au factori primi comuni.

Metoda 2. Algoritmul lui Euclid:

Acest algoritm implică operația de împărțire și calcularea resturilor.

Pasul 1. Împarte numărul mai mare la numărul mai mic:

700 : 630 = 1 + 70;

Pasul 2. Împarte numărul mai mic la restul operației de mai sus:

630 : 70 = 9 + 0;

La acest moment, restul e zero, ne oprim:

70 e numărul căutat, ultimul rest diferit de zero.

Acesta e cel mai mare divizor comun.

Cel mai mare divizor comun:

cmmdc (700; 630) = 70

>> Algoritmul lui Euclid

cmmdc (700; 630) = 70 = 2 × 5 × 7;

Răspuns final:

cmmdc (700; 630) = 70 = 2 × 5 × 7;