Bună,
[tex](2x ^{2} ) ^{3} \div (4x ^{4} ) = \\ ({8x}^{6} ) \div (4x ^{4}) = \\ 2 {x}^{2} \\ [/tex]
[tex]3xy \times (4x) ^{2} = \\ 3xy \times 16 {x}^{2} = \\ 48 {x}^{3} y[/tex]
[tex]16 {x}^{4} \div ( - 4 {x}^{2} ) ^{2} = \\ 16 {x}^{4} \div (16 {x}^{4} ) = \\ 1[/tex]
[tex](4 {x}^{2} {y}^{2} ) ^{3} \div ( - 8 {x}^{3}y^{5} ) = \\ (64 {x}^{6} {y}^{6} ) \div ( - 8 {x}^{3} {y}^{5} ) = \\ - 8 {x}^{3} y[/tex]
[tex]9a ^{2} {b}^{3} \div (3a {b}^{2} ) \times ( - 3ab) = \\ 3ab \times ( - 3ab) = \\ - 9 {a}^{2} {b}^{2} [/tex]
[tex](4x ^{2} ) ^{2} \div (2x)^{2} \div x ^{2} = \\ 16 {x}^{4} \div 4x ^{2} \div {x}^{2} = \\ 4[/tex]
Sper că te-am ajutat