Răspuns: [tex]\bf \green{\underline{~2^{55}~}}[/tex]
Explicație pas cu pas:
[tex]\bf 2^{1}\cdot 2^{2} \cdot 2^{3}\cdot 2^{4}\cdot 2^{5}\cdot .....\cdot 2^{10} =[/tex]
[tex]\bf 2^{1+2+3+....+10}= 2^{10\cdot11:2}=[/tex]
[tex]\bf 2^{5\cdot11}=\green{\underline{~2^{55}~}}[/tex]
[tex]\bf[/tex]
[tex]\red{\bf \star~\underline{Formule~pentru~puteri}:}[/tex]
[tex]\red{\large \bf a^{0} = 1}[/tex]
[tex]\red{\large \bf \big(a^{n}\big)^{m} = a^{n \cdot m}}[/tex]
[tex]\red{\large \bf a^{n}\cdot a^{m} =a^{n+m}}[/tex]
[tex]\red{\large \bf a^{n}: a^{m} =a^{n-m}}[/tex]
[tex]==pav38==[/tex]