Răspuns :
Metoda I:
Observam ca avem o suma de termeni a unei progresii geometrice. Primul termen este 2, ratia este 2 iar numarul de termeni este 2014.
N = [tex]N = 2\frac{2^{2014}-1}{2-1} = 2^{2015}-2\\N+2 = 2^{2015}-2+2=2^{2015}[/tex]
Metoda II:
Stim formula [tex]1+ 2^1+2^2+2^3+...+2^n = 2^{n+1}-1[/tex]
Deci [tex]N = 2^1+2^2+2^3+...+2^{2014} = 2^{2014+1}-2[/tex]
[tex]N+2 = 2^1+2^2+2^3+...+2^{2014}+2 = 2^{2014+1}-2+2=2^{2015}[/tex]
[tex]\it n= 2+2^2+2^3+\ ...\ +2^{2014}=2\cdot\dfrac{2^{2014}-1}{2-1}=2^{2015}-2\\ \\ \\ n+2=2^{2015}-2+2=2^{2015}[/tex]