Răspuns:
Explicație pas cu pas:
a) (√2+x)² = 2+2√2 ·x +x²
b) (x-√5)² = x²-2√5·x +5
c) (y+2√2)² = y²+4y√2 + 8
d) (√3x -1)² = 3x²-2x√3+1
e) (√2a -3)² = 2a²-6a√2 +9
f) (2x-√3) = 4x²-4x√3+3
g) (x+√7)² = x²+2x√7 + 7
h) (2x+3√3)² = 4x²+12x√2 + 27
i) (√3x-√2)² = 3x²-2x√6 + 2
j) (√2x+√5)² = 2x²+2x√10 + 5
k) (2x-√5)² = 4x²-4x√5+5
l) (3x-√2)² = 9x²-6x√2+2
6) a) (√3x+√5)(√3x-√5) = 3x²-5
b) (2x-√3)(2x+√3) = 4x²-3
c) (x-√7)(x+√7) = x²-7
d) (√2x-3√3)(√2x+3√3) = 2x²-27
e) (x/3 - 1/2)(x/3+1/2) = x²/9 -1/4
f) (2a/3 - 1)(2a/3+1) = 4a²/9 -1
g) (7x/5-3y/4) (7x/5 + 3y/4) = 49x²/25 -9y²/16
h) (x/5+2y/3)(x/5-2y/3) = x²/25-4y²/9
i) (3√2x+1/7)(3√2x-1/7) = 18x²-1/49
j) (√2x-y/√2)(√2x+y/√2) = 2x²-y²/2