Calculați: (23^2018×2^2017):[(46^2)^5]201=​

Răspuns :

Răspuns: [tex]\red{\underline{~\bf 23^{8}\cdot2^{7}~}}[/tex]

Explicație pas cu pas:

[tex]\bf \big(23^{2018}\cdot2^{2017}\big):\big[\big(46^{2}\big)^{5}\big]^{201}=[/tex]

[tex]\bf \big(23^{2018}\cdot2^{2017}\big):\big(46^{2}\big)^{5\cdot201}=[/tex]

[tex]\bf \big(23^{2018}\cdot2^{2017}\big):\big(46^{2}\big)^{1005}=[/tex]

[tex]\bf \big(23^{2018}\cdot2^{2017}\big):46^{2\cdot 1005}=[/tex]

[tex]\bf \big(23^{2018}\cdot2^{2017}\big):46^{2010}=[/tex]

[tex]\bf \big(23^{2018}\cdot2^{2017}\big): \big(23\cdot2\big)^{2010}=[/tex]

[tex]\bf \big(23^{2018}\cdot2^{2017}\big): \big(23^{2010}\cdot2^{2010}\big) =[/tex]

[tex]\bf 23^{2018-2010}\cdot2^{2017-2010} =[/tex]

[tex]\red{\underline{~\bf 23^{8}\cdot2^{7}~}}[/tex]

[tex]==pav38==[/tex]