Explicație pas cu pas:
Vom folosi următoarele formule:
[tex] \red{ \boxed{ \bf {a}^{m} \times {a}^{n} = {a}^{m + n} } } \\ \red{ \boxed{ \bf {a}^{m} \div {a}^{n} = {a}^{m - n} } } [/tex]
Efectuăm:
[tex] \bf ( {2}^{30} + {2}^{30} ) \div {2}^{31} = [/tex]
[tex] \bf (2 \times {2}^{30} ) \div {2}^{31} = [/tex]
[tex] \bf ( {2}^{1} \times {2}^{30} ) \div {2}^{31} = [/tex]
[tex] \bf {2}^{1 + 30} \div {2}^{31} = [/tex]
[tex] \bf {2}^{31} \div {2}^{31} = [/tex]
[tex] \bf {2}^{31 - 31} = [/tex]
[tex] \bf {2}^{0} = \gray{ \boxed{1} } [/tex]