G este punctul de intersectie al medianelor, deci se afla la doua treimi e varf si o treime de baza.
[tex]GC=\frac{2}{3} *CD=\frac{2}{3} *24=16cm[/tex]
[tex]GB=\frac{2}{3} *BE=\frac{2}{3} *18=12cm[/tex]
Aplicam formula ariei unui triunghi oarecare in functie de laturi
[tex]p=\frac{BC+BG+CG}{2} =\frac{20+12+16}{2} =\frac{48}{2} =24cm[/tex]
[tex]A=\sqrt{p*(p-BC)*(p-BG)*(p-CG)} \\ A=\sqrt{24*(24-20)*(24-12)*(24-16)}\\A=\sqrt{24 *4*12*8 }\\A=\sqrt{6^{2} *8^{2} *2^{2} }\\A=6*8*2\\A=96cm^{2}[/tex]
(p-semiperimetrul,A-aria)