Nu știu de câte ori sa mai pun ex ca sa mi se adauge un răspuns
Va implor din tot sufletul meu
Va rog mult
Orice sa știe cum se rezolva sa atașeze un răspuns
Fără Glume
Ajutor ❗️❗️❗️❗️❗️❗️


Nu Știu De Câte Ori Sa Mai Pun Ex Ca Sa Mi Se Adauge Un Răspuns Va Implor Din Tot Sufletul Meu Va Rog Mult Orice Sa Știe Cum Se Rezolva Sa Atașeze Un Răspuns Fă class=

Răspuns :

Salut!

Exercitiul 16:

[tex]\begin{aligned}\text{a)} \ x&=\frac23(4\sqrt2-\frac5{\sqrt2})\\x&=\frac23(4\sqrt2-\frac{5\sqrt2}{2})\\x&=\frac23 \cdot \frac{3\sqrt2}{2}\\x&=\sqrt2\end{aligned}[/tex]

[tex]\begin{aligned}y&=(\sqrt6+\frac{\sqrt2}{\sqrt3})\div\frac2{\sqrt3}\\y&=\frac{\sqrt{18}+\sqrt2}{\sqrt3}\cdot\frac{\sqrt3}2\\y&=(3\sqrt2+\sqrt2)\frac12\\y&=\frac{4\sqrt2}2\\y&=2\sqrt2\end{aligned}[/tex]

[tex]\begin{aligned}\Rightarrow \text{Media geometrica} &= \sqrt{xy}\\&=\sqrt{\sqrt2\cdot2\sqrt2}\\&=\sqrt{2\cdot2}\\&=2\end{aligned}[/tex]

[tex]\begin{aligned}\text{b)}\ x&=\frac32(2\sqrt3-\frac4{\sqrt3})\\x&=\frac32(2\sqrt3-\frac{4\sqrt3}3)\\x&=\frac32\cdot\frac{2\sqrt3}3\\x&=\frac{2\sqrt3}2\\x&=\sqrt3\end{aligned}[/tex]

[tex]\begin{aligned}y&=(\sqrt6+\frac{\sqrt3}{\sqrt2})\div\frac1{\sqrt2}\\y&=\frac{\sqrt{12}+\sqrt3}{\sqrt2}\cdot\sqrt2\\y&=2\sqrt3+\sqrt3\\y&=3\sqrt3\end{aligned}[/tex]

[tex]\begin{aligned}\Rightarrow \text{Media geometrica}=&\sqrt{xy}\\=&\sqrt{\sqrt3\cdot3\sqrt3}\\=&\sqrt{3\cdot3}\\=&3\end{aligned}[/tex]

Exercitiul 17:

[tex]\begin{aligned}\text{a)}\ x&=(\sqrt3+(3\sqrt3)^3)\div7\\x&=(\sqrt3+27\cdot3\sqrt3)\div7\\x&=(\sqrt3+81\sqrt3)\div7\\x&=82\sqrt3\div7\\x&=\frac{82\sqrt3}7\end{aligned}[/tex]

[tex]\begin{aligned}y&=((\frac{\sqrt3}{\sqrt2}-\frac{\sqrt2}{\sqrt3})\div\frac1{\sqrt2})^3\\y&=((\frac{\sqrt3}{\sqrt2}-\frac{\sqrt2}{\sqrt3})\sqrt2)^{-1}\\y&=(\sqrt{3}-\frac{2}{\sqrt3})^3\\y&=(\frac{\sqrt3}3)^3\\y&=\frac{3\sqrt3}27\\y&=\frac{\sqrt3}9\end{aligned}[/tex]

[tex]\begin{aligned}\Rightarrow \text{Media geometrica}=&\sqrt{xy}\\=&\sqrt{\frac{82\sqrt3}7\cdot\frac{\sqrt3}9\\=&\sqrt{\frac{246}{63}}\\=&\sqrt\frac{82}{21}\\=&\frac{\sqrt{1722}}{21}\end{aligned}[/tex]

[tex]\begin{aligned}\text{b)}\ x&=(\sqrt2+(2\sqrt2)^3)\div3\\x&=(\sqrt2+16\sqrt2)\div3\\x&=17\sqrt2\div3\\x&=\frac{17\sqrt2}3\end{aligned}[/tex]

[tex]\begin{aligned}y&=((\frac{\sqrt5}{\sqrt2}-\frac{\sqrt2}{\sqrt5})\div\frac3{\sqrt5})^3\\y&=((\frac{\sqrt5}{\sqrt2}-\frac{\sqrt2}{\sqrt5}\frac{\sqrt5}3)^3\\y&=(\frac{\frac5{\sqrt2}-\sqrt2}{3})^3\\y&=(\frac{\frac3{\sqrt2}}3)^3\\y&=(\frac1{\sqrt2})^3\\y&=(\frac{\sqrt2}2)^3\\y&=\frac{2\sqrt2}8\\y&=\frac{\sqrt2}4\end{aligned}[/tex]

[tex]\begin{aligned}\Rightarrow \text{Media geometrica}=& \sqrt{xy}\\=& \sqrt{\frac{17\sqrt2}3\cdot\frac{\sqrt2}4}\\=& \sqrt\frac{17\sqrt2\sqrt2}{12}\\=& \sqrt\frac{34}{12}\\=& \sqrt\frac{17}6\\=& \frac{\sqrt{102}}6\end{aligned}[/tex]

-Luke48