Răspuns:
[tex]a)2 \times ( \sqrt{3} + \sqrt{5}) = 2 \times \sqrt{3} + 2 \times \sqrt{5} = 2 \sqrt{3} + 2 \sqrt{5} [/tex]
[tex]b)3 \times (2 \sqrt{3} - \sqrt{2} ) = 3 \times 2 \sqrt{3} - 3 \times \sqrt{2} = 6 \sqrt{3} - 3 \sqrt{2} [/tex]
[tex]c) \sqrt{2} \times (5 + \sqrt{2} ) = \sqrt{2} \times 5 + \sqrt{2} \times \sqrt{2} = 5 \sqrt{2} + 2 [/tex]
[tex]d) \frac{8 \sqrt{5} }{3} \times ( \frac{3 \sqrt{5} }{2} - \frac{9 \sqrt{2} }{4} ) = \frac{8 \sqrt{5} }{3} \times \frac{3 \sqrt{5} }{2} - \frac{8 \sqrt{5} }{3} \times \frac{9 \sqrt{2} }{4} = \frac{8 \sqrt{5} \times 3 \sqrt{5} }{3 \times 2} - \frac{8 \sqrt{5} \times 9 \sqrt{2} }{3 \times 4} = \frac{24 \times 5}{6} - \frac{72 \sqrt{10} }{12} = \frac{120}{6} - \frac{72 \sqrt{10} }{12} = \frac{240 - 72 \sqrt{10} }{12} [/tex]