Răspuns :
Răspuns:
Explicație pas cu pas:
0,1(1x) = (11x - 1) / 990
0,2(2x) = (22x - 2) / 990
0,3(3x) = (33x - 3) / 990
....
0,9(9x) = (99x - 9) / 990
Adunand:
0,1(1x) + 0,2(2x) + 0,3(3x) + ... + 0,9(9x) =
= (11x - 1) / 990 + (22x - 2) / 990 + (33x - 3) / 990 + ... + (99x - 9) / 990 =
= (11x - 1 + 22x - 2 +33x - 3 + ... + 99x - 9) / 990 =
= [11x + 22x +33x + ... + 99x - (1 + 2 + 3 + ... +9)] / 990 =
= [(110 + x) + (220 + x) + (330 + x) +. .. + (990 + x) - 45] / 990 =
= [9x + 110 + 220 + 330 + ... + 990 - 45] / 990 =
= [9x + 110*(1 + 2 + 3 + ... + 9) - 45] / 990 =
= (9x + 110*45 - 45) / 990 =
= (9x + 109*45) / 990 =
= (9x + 4905) / 990
Asadar avem ecuatia:
(9x + 4905) / 990 = 4923 / 990
9x + 4905 = 4923
9x = 4923 - 4905
9x = 18
x = 2
[tex]\it \overline{0,1(1x)}=\dfrac{\overline{11x}-1}{990}=\dfrac{110+x-1}{990}\\ \\ \\ \overline{0,2(2x)}=\dfrac{\overline{22x}-2}{990}=\dfrac{220+x-2}{990}[/tex]
Egalitatea din enunț devine:
[tex]\it \dfrac{\overbrace{(110+x-1)+(220+x-2)+(330+x=3)+\ ...\ +(990+x-9)}^{9\ paranteze}}{990}=\dfrac{4923}{990}\Rightarrow\\\\ \\ \Rightarrow 110(1+2+3+\ ...\ +9)+9x-(1+2+3+\ ...\ +9)=4923 \Rightarrow \\ \\ \\ \Rightarrow 110\cdot45+9x-45=4923 \Rightarrow 109\cdot45+9x=4923|_{:9} \Rightarrow \\ \\ \\ \Rightarrow 109\cdot5+x=547 \Rightarrow 545+x=547|_{-545} \Rightarrow x=2[/tex]