Răspuns:
[tex]i) {3}^{108} \div ( {3}^{15} ) {}^{6} = {3}^{108} \div {3}^{90} = 3 {}^{108 - 90} = {3}^{18} \\ k) ({2}^{10} \times {3}^{7} ) {}^{9} \div ( {2}^{5} \times {3}^{6} ) {}^{10} = \frac{( {2}^{10} \times {3}^{7}) {}^{9} }{( {2}^{5} \times {3}^{6} ) {}^{10} } = \frac{( {2}^{3} \times {6}^{7} ) {}^{9} }{(3 \times {6}^{5}) {}^{10} } = \frac{ {2}^{27} \times {6}^{63} }{59049 \times {6}^{50} } = \frac{ {2}^{27} \times {6}^{13} }{59049} = \frac{ {12}^{13} \times {2}^{14} }{59049} = \frac{ {12}^{13} \times 16384}{59049} \\ j)( {3}^{7} \times {5}^{12} ) {}^{2} = ({5}^{5} \times {15}^{7} ) {}^{2} =( 3125 \times {15}^{7} ) {}^{2} = {3125}^{2} \times {15}^{14} [/tex]