rezolva înmulțirea numerelor întregii ecuații 5x{3+4x[1+2(xsupra3-4)]}+11=46​

Răspuns :

Răspuns:

5x{3+4x[1+2(x/3-4)]}+11=46​

3+4[1+2(x/3-4)=46-11:5

4[1+2(x/3-4)=7-3

1+2(x/3-4)=4:4

2(x/3-4)=1-1

x/3-4=0

x/3=4

x=4·3

x=12

Răspuns: [tex]\red{\bf x = 12}[/tex]

Explicație pas cu pas:

[tex]\bf 5\cdot\bigg\{3+4\cdot\bigg[1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)\bigg]\bigg\}+11=46[/tex]

[tex]\bf 5\cdot\bigg\{3+4\cdot\bigg[1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)\bigg]\bigg\}=46-11[/tex]

[tex]\bf 5\cdot\bigg\{3+4\cdot\bigg[1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)\bigg]\bigg\}=35~~~\bigg|:5[/tex]

[tex]\bf 3+4\cdot\bigg[1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)\bigg]=7[/tex]

[tex]\bf 4\cdot\bigg[1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)\bigg]=7-3[/tex]

[tex]\bf 4\cdot\bigg[1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)\bigg]=4~~~\bigg|:4[/tex]

[tex]\bf 1+2\cdot\bigg(\dfrac{x}{3}-4\bigg)=1[/tex]

[tex]\bf 2\cdot\bigg(\dfrac{x}{3}-4\bigg)=1-1[/tex]

[tex]\bf 2\cdot\bigg(\dfrac{x}{3}-4\bigg)=0[/tex]

[tex]\bf \dfrac{2x}{3}-8=0[/tex]

[tex]\bf \dfrac{2x}{3}=8~~~\bigg|\cdot 3[/tex]

[tex]\bf 2x=24~~~~\bigg|:2[/tex]

[tex]\red{\boxed{\bf x = 12}}[/tex]