Răspuns :
Răspuns:
(m+1)(n+1)(p+1) impar=>m+1 impar
n+1 impar
p+1 impar
=> m, n, p numere pare
[tex] {a}^{m} \times {b}^{n} \times {c}^{p} = \\ {a}^{2m} \times {b}^{2n} \times {c}^{2p} = ({ {a}^{m} \times {b}^{n} \times {c}^{p} })^{2} [/tex]
Răspuns:
(m+1)(n+1)(p+1) impar=>m+1 impar
n+1 impar
p+1 impar
=> m, n, p numere pare
[tex] {a}^{m} \times {b}^{n} \times {c}^{p} = \\ {a}^{2m} \times {b}^{2n} \times {c}^{2p} = ({ {a}^{m} \times {b}^{n} \times {c}^{p} })^{2} [/tex]