Răspuns :
Răspuns:
a) AM=MB=AB/2=6/2=3 cm
∡ABC=∡ANM ( ipoteza ) - 1 (efectiv luam toate variantele de litere fara s ale schimbam locurile)
∡A=∡A ( comun ) - 2 (BAC=NAM)
Din 1 si 2 => U.U => ΔAMN ASEMENEA CU ΔACB
=> AM/AC=MN/CB=AN/AB => 3/9=MN/12=AN/6 => 1/3=MN/12=AN/6
=>1/3=MN/12 => MN=(1*12)/3=4 cm
1/3=AN/6 => AN=(1*6)/3 = 6/3 = 2 cm
P ΔAMN = AM+AN+MN=3+2+4=5+4=9 cm
sper ca te-am ajutat, cpl!
(app am editat raspunsul original)
a)
M este mijlocul segmentului AB ⇒ AM = 6:2 = 3cm
Analizăm Δ ABC, ΔANM:
∡A = unghi comun (1)
∡ABC = ∡ANM (2)
(1), (2) ⇒ΔABC ~ΔANM ⇒ k=AC/AM = 9/3 = 3 (raportul de asemănare)
[tex]\it \dfrac{\mathcal{P}_{ABC}}{\mathcal{P}_{ANM}}=k \Rightarrow \dfrac{6+9+12}{\mathcal{P}_{AMN}}=3\Rightarrow \dfrac{27}{\mathcal{P}_{AMN}}=3 \Rightarrow \mathcal{P}_{ANM}=9cm[/tex]
b)
[tex]\it \dfrac{\mathcal{A}_{ABC}}{\mathcal{A}_{ANM}}=k^2=9 \Rightarrow \mathcal{A}_{ABC}=9\mathcal{A}_{ANM} \Rightarrow \mathcal{A}_{ABC}=9(\mathcal{A}_{ABC}-\mathcal{A}_{BMNC}) \Rightarrow\\ \\ \\ \Rightarrow \mathcal{A}_{ABC}=9\mathcal{A}_{ABC}-9\mathcal{A}_{BMNC}\Rightarrow 9\mathcal{A}_{BMNC}=8\mathcal{A}_{ABC}|_{:9} \Rightarrow \\ \\ \\ \Rightarrow \mathcal{A}_{BMNC}=\dfrac{8}{9}\mathcal{A}_{ABC}[/tex]