Răspuns :
a)
[tex]\it \Big(\dfrac{1}{2},\ -\dfrac{1}{3}\Big)\ solu\c{\it t}ie\ a\ sistemului\ dac\breve a:\\ \\ \\ \begin{cases} \it \dfrac{1}{\dfrac{1}{2}}-\dfrac{1}{\dfrac{1}{3}}=-1 \Rightarrow 2-3=-1 \Rightarrow -1=-1\ (A)\\ \\ \\ \it \dfrac{2}{\dfrac{1}{2}}+\dfrac{3}{\dfrac{1}{3}}=13 \Rightarrow 4+9=13 \Rightarrow 13-13\ (A)\end{cases}\\ \\ \\ Deci,\ \ perechea\ \ \Big(\dfrac{1}{2},\ -\dfrac{1}{3}\Big)\ \ este\ \ solu\c{\it t}ie\ a\ sistemului.[/tex]
b) Soluția sistemului verifică ecuația de la b), rezultă:
[tex]\it mx+(m-1)y=1\ \Rightarrow mx+my-y=1 \Rightarrow m(x+y)=y+1 \Rightarrow m=\dfrac{y+1}{x+y}=\\ \\ \\ =\dfrac{-\dfrac{1}{3}+1}{\dfrac{1}{2}-\dfrac{1}{3}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{6}}=\dfrac{2}{3}\cdot\dfrac{6}{1}=4[/tex]