[tex]2x - m^2 + 1 = 0\Rightarrow 2x = m^2 - 1\Rightarrow \displaystyle x = \frac{m^2-1}2\\\text{Solu\c tia ecua\c tiei este } \displaystyle x = \frac{m^2-1}2 \text{ \c si se cere ca } x<0\Leftrightarrow \displaystyle \frac{m^2-1}2 <0\Leftrightarrow\\m^2-1<0\Rightarrow m^2<1\Rightarrow\sqrt{m^2} < \sqrt1\Rightarrow |m| <1\\\Rightarrow -1<m<1\Rightarrow m\in(-1,\,1)[/tex]