p+s=c
s=p+f
2c=3f
_________
?p=s
_________
s=p+f
p+s=c➜s=c-p
➜p+f=c-p
2c=3f ➜c=3f/2
➜p+f=3f/2-p
[tex] {}^{2)} p + {}^{2)} f = \frac{3f}{2} - {}^{2)} p \\ \\ \\ \frac{2p}{2} + 2f = \frac{3f}{2} - 2p \: \: | \times 2 \\ \\ 2p + 2f = 3f - 2p \\ 2p + 2p = 3f - 2f \\ 4p = f[/tex]
s=p+f
4p=f
➜s=p+4p
[tex] \boxed{ \huge \red{ s= 5p}}[/tex]
,unde
p=pahar
s=sticlă
c=cană
f=farfurie