Va rog daca puteti sa ma ajutati ex 2
b)aria laterala a piramidei
c)volumul de metal care se pierde​


Va Rog Daca Puteti Sa Ma Ajutati Ex 2baria Laterala A Piramideicvolumul De Metal Care Se Pierde class=

Răspuns :

Răspuns:

Explicație pas cu pas:

  • a)A  laterala=Pbazei*inaltimea= 3AB*AA'=3*12*12=...calculezi tu cm²

problema de nota 5

b) mai grea, intr-adevar

  • aflam volumul piramidei=Ab*h/3= 12*12*(12√3/2) *(1/3)=2*144√3 cm³

( am putut aplica formula de la volumul piramidei regulate, singura invata  de noi, pt ca este piram regulat, arwe baza  patrat si muchiile laterale  sunt congruente; inaltimea piramidei este inaltimea oricarei baze, adica a unui tr echialt de latura 12)

  • aflam volumul prismei

(12²√3/4 )*12=3*144√3 cm³

  • scazand volumul piramidei din volumul prismei,l obtinem 1*144√3=144√3 cm³

Înălțimea piramidei = înălțimea în Δ ABC, dusă din C.

[tex]\it Fie\ \ AB'\ \cap\ A'B=\{O\} \Rightarrow SO\perp(ABB')\ \ \ \ \ \ \ (1)\\ \\ Fie\ CM\perp AB\ \ \ \ \ \ \ (2)\\ \\ A'A\perp (ABC) \Rightarrow A'A\perp CM \Rightarrow CM\perp A'A\ \ \ \ \ \ \ (3)\\ \\ A'A\cap AB = \{A\}\ \ \ \ \ \ \ (4)\\ \\ \\ (2),\ (3),\ (4) \Rightarrow CM\perp(ABB')\ \ \ \ \ \ (5)[/tex]

[tex]\it CC'||(ABB')\ \stackrel{(1),(5)}{\Longrightarrow}\ SO=CM=d[CC',\ (ABB')][/tex]

[tex]\it CM=\dfrac{\ell \sqrt3}{2}=\dfrac{12\sqrt3}{2}=6\sqrt3\ cm=SO=h_{piramid\breve a}[/tex]

b)

[tex]\it Apotema\ piramidei = d(S,\ AA') =d(CC',\ AA')=AC=12\ cm \\ \\ \mathcal{A}_{\ell} =4\cdot\mathcal{A}_{SAA'}= 4\cdot \dfrac{12\cdot12}{2}=288\ cm^2[/tex]