sin(a)+sin(b)+sin(c) transformat in produs
nu ma intereseaza neaparat rezultatul, mai degraba algoritmul de calcul


Răspuns :

Răspuns:

[tex]sinA+sinB+sinC=2sin\frac{A+B}{2}*cos\frac{A-B}{2}+sinC[/tex]

Stim ca [tex]A+B+C=180^*=>A+B=180-C[/tex]

[tex]sin\frac{A+B}{2}=sin\frac{180^*-C}{2}=sin(90^*-\frac{C}{2})=cos \frac{C}{2}[/tex]

[tex]sinC=sin(2*\frac{C}{2})=2sin\frac{C}{2}*cos\frac{C}{2}[/tex]

Inlocuim:

[tex]2cos\frac{C}{2}*cos\frac{A-B}{2}+2sin\frac{C}{2}*cos\frac{C}{2}[/tex]

[tex]2cos\frac{C}{2}(cos\frac{A-B}{2}+sin\frac{C}{2})[/tex]