Explicati-mi radicalul va rog, sau cel putin bazele acestuia.​

Răspuns :

[tex] \boxed{\sqrt{ {a}^{2} } = a}[/tex]

Exemple:

[tex] \sqrt{49} = \sqrt{ {7}^{2} } = 7[/tex]

[tex] \sqrt{25} = \sqrt{ {5}^{2} } = 5[/tex]

[tex] \sqrt{36} = \sqrt{ {6}^{2} } = 6[/tex]

[tex] \sqrt{1} = 1[/tex]

[tex] \sqrt{100} = \sqrt{ {10}^{2} } = 10[/tex]

[tex] \sqrt{16} = \sqrt{ {4}^{2} } = 4[/tex]

[tex] \sqrt{9} = \sqrt{ {3}^{2} } = 3[/tex]

[tex] \sqrt{12} = \sqrt{4 \times 3} = \sqrt{ {2}^{2} \times 3} = 2 \sqrt{3} [/tex]

[tex] \sqrt{8} = \sqrt{ {2}^{2} \times 2 } = 2 \sqrt{2} [/tex]

[tex]{ \sqrt{50} } = \sqrt{5 \times 10} = \sqrt{5 \times 2 \times 5} = \sqrt{ {5}^{2} \times 2 } = 5 \sqrt{2} [/tex]