Răspuns :
Răspuns:
Explicație pas cu pas:
1)
formula de transformare din grade în radiani: [tex]1^{0}[/tex] = [tex]\frac{\pi }{180}[/tex]
[tex]\frac{\pi }{180}[/tex] ≅ 0,017
a) [tex]15^{0}[/tex] = 15 · [tex]\frac{\pi }{180}[/tex] = 15 · 0,017 = 0,255 rad
b) [tex]75^{0}[/tex] = 75 · [tex]\frac{\pi }{180}[/tex] = 75 · 0,017 = 1,275 rad
c) [tex]35^{0}[/tex] = 35 · [tex]\frac{\pi }{180}[/tex] = 35 · 0,017 = 0,595 rad
d) [tex]10^{0}[/tex] = 10 · [tex]\frac{\pi }{180}[/tex] = 10 · 0,017 = 0,17 rad
e) [tex]450^{0}[/tex] = 450 · [tex]\frac{\pi }{180}[/tex] = 450 · 0,017 = 7,65 rad
f) [tex]575^{0}[/tex] = 575 · [tex]\frac{\pi }{180}[/tex] = 575 · 0,017 = 9,775 rad
g) [tex]620^{0}[/tex] = 620 · [tex]\frac{\pi }{180}[/tex] = 620 · 0,017 = 10,54 rad
2)
formula de transformare din radiani în grade: 1 rad = [tex]\frac{180^{0} }{\pi }[/tex]
a) [tex]\frac{5\pi }{3}[/tex] · [tex]\frac{180^{0} }{\pi }[/tex] = [tex]300^{0}[/tex]
b) [tex]\frac{7\pi }{6}[/tex] · [tex]\frac{180^{0} }{\pi }[/tex] = [tex]210^{0}[/tex]
c) 3π · [tex]\frac{180^{0} }{\pi }[/tex] = 540
d) [tex]\frac{5\pi }{4}[/tex] · [tex]\frac{180^{0} }{\pi }[/tex] = 225
e) [tex]\frac{4\pi }{3}[/tex] · [tex]\frac{180^{0} }{\pi }[/tex] = 240
f) 8π · [tex]\frac{180^{0} }{\pi }[/tex] = 1440
g) [tex]\frac{7\pi }{2}[/tex] · [tex]\frac{180^{0} }{\pi }[/tex] = 630