Poate cineva sa rezolve, macar un subpunct? Va rog, dau coroana! si 50 de puncte!!!!

Poate Cineva Sa Rezolve Macar Un Subpunct Va Rog Dau Coroana Si 50 De Puncte class=

Răspuns :

[tex]\it (BC):\ \dfrac{y-y_B}{y_C-y_B}=\dfrac{x-x_B}{x_C-x_B} \Rightarrow \dfrac{y+3}{-5+3}=\dfrac{x+1}{5+1} \Rightarrow \dfrac{y+3}{-2}=\dfrac{x+1}{6} \Rightarrow\\ \\ \\ \Rightarrow6y+18=-2x-2|_{-18} \Rightarrow 6y=-2x-20|_{:2} \Rightarrow 3x=-x-10|_{:3} \Rightarrow\\ \\ \\ x=-\dfrac{1}{3}x-\dfrac{10}{3} \ (ecua\c{\it t}ia\ dreptei BC)\\ \\ \\ m=-\dfrac{1}{3}\ \ (panta\ dreptei\ BC)[/tex]

[tex]\it \left.\begin{aligned} \it x_M=\dfrac{x_A+x_B}{2}=\dfrac{5-1}{2}=2\\ \\ \\ \it y_M=\dfrac{y_A+y_B}{2}=\dfrac{7-3}{2}=2 \end{aligned}\right\} \Rightarrow M(2,\ 2)\\ \\ \\ \left.\begin{aligned} \it x_P=\dfrac{x_A+x_C}{2}=\dfrac{5+5}{2}=5\\ \\ \\ \it y_P=\dfrac{y_A+y_C}{2}=\dfrac{7-5}{2}=1 \end{aligned}\right\} \Rightarrow P(5,\ 1)[/tex]

[tex]\it (MP): \dfrac{y-y_p}{y_M-y_P}=\dfrac{x-x_P}{x_M-x_P} \Rightarrow \dfrac{y-1}{2-1}=\dfrac{x-5}{2-5} \Rightarrow \dfrac{y-1}{1}=\dfrac{x-5}{-3} \Rightarrow\\ \\ \\ -3y+3=x-5|_{-3} \Rightarrow -3y=x-8|_{:(-3)} \Rightarrow y=-\dfrac{1}{3}x+\dfrac{8}{3}\ (ecua\c{\it t}ia\ lui\ MP)\\ \\ \\ m=-\dfrac{1}{3}\ (panta\ dreptei\ MP)[/tex]

Deoarece dreptele BC și MP au aceeași pantă ⇒ MP || BC.