demonstrati ca urmatoarele numere sunt divizibile cu 13
a)....il stiu
b)B=3+3^2+3^3+...+3^2015


VA ROOOOOOOOOOOOOOG!URGENT!!!!!!!​


Răspuns :

Răspuns: Ai demonstrația mai jos

Explicație pas cu pas:

Salutare !

[tex]\large \bf B= 3+3^2+3^3+...+3^{2015}[/tex]

[tex]\large \bf B= (3^{1}+3^{2}+3^{3})+(3^{4}+3^{5}+3^{6})+...+(3^{2013}+3^{2014}+3^{2015})[/tex]

[tex]\large \bf B=3^{1}\cdot (3^{0}+3^{1}+3^{2})+3^{4}\cdot(3^{0}+3^{1}+3^{2})+...+3^{2013}\cdot(3^{0}+3^{1}+3^{2})[/tex]

[tex]\large \bf B=3^{1}\cdot (1+3+9)+3^{4}\cdot(1+3+9)+...+3^{2013}\cdot(1+3+9)[/tex]

[tex]\large \bf B=3^{1}\cdot 13+3^{4}\cdot 13+...+3^{2013}\cdot 13[/tex]

[tex]\color{red}\large \boxed{\bf B=13 \cdot (3^{1}+3^{4}+...+3^{2013})\implies B~\vdots~13}[/tex]

#copaceibrainly    

[tex]\it 3+3^2+3^3=3(1+3+9)=3\cdot13\\ \\ 3^4+3^5+3^6=3^4(1+3+9)=3^4\cdot13\\ \\ 3^{2013}+3^{2014}+3^{2015}=3^{2013}(1+3+9)=3^{2013}\cdot13[/tex]

[tex]\it B=13(3+3^4+3^7+\ ...\ +3^{2013}) \Rightarrow B\ \vdots\ 13[/tex]