Răspuns :
Răspuns:
AD=19,6 cm
PΔABC=48 cm
EXPLICARE PAS CU PAS :
m(∡A)=90°
A=12 cm , BC=20 cm
AD⊥BC , D∈BC
AD=? , PΔABC =?
........................................
AD²=BD · DC , AB²=BD · BC ⇒BD=AB²/BC ⇒BD=12²/20=144/20=>BD=7,2 cm
DC=BC-BD⇒20-7,2⇒DC=12,8 cm
AD²=7,2 · 12,8 ⇒AD=√92,16 ⇒AD=19,16 cm
PΔABC=AB+BC+AC
BC²=AB²+AC²⇒AC²=BC²-AB²⇒AC²=20²-12²=400-144⇒AC²=256⇒AC=√256⇒AC=16 cm
PΔABC=12+16+20=28+20=48 cm
PΔ ABC=48 cm
[tex]\it \Delta ABC-dr\ ( \hat A=90^o)\ \stackrel{T.P.}{\Longrightarrow} AC^2=BC^2-AB^2=20^2-12^2=\\ \\ =(20-12)(20+12)=8\cdot32=8\cdot8\cdot4=8^2\cdot2^2=16^2 \Rightarrow AC=16\ cm[/tex]
[tex]\it AD=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16^{(2}}{20}=\dfrac{12\cdot8}{10}=\dfrac{96}{10}=9,6\ cm\\ \\ \\ \mathcal{P}=AB+AC+BC=12+16+20=48\ cm[/tex]