Răspuns :
Răspuns:
O functieeste injectiva daca din f(x1)=f(x2)=> x1=x2
a)fiex1,x2∈R a,i f(x1)=f(x2) =>
2x1+5=2x2+5
2x1=2x2║:2
x1=x2 => f injectiva
b)f(x1)=f(x2)
-5x1+2=-5x2+2
-5x1=-5x2║:(-5)
x1=x2=> f injectiva
c)fx1)=f(x2)
2x1+3=2x2+3
2x1=2x2║:2
x1=x2 => f injectiva
d) f(x1)=f(x2)
(1-x1)/x1=(1-x2)/x2
Aduci la acelasi numitor
x2(1-x1)/x1*x2=x1(1-x2)x1*x2
x2-x2*x1=x1-x1*x2
x2=x1 => f injectiva
Răspuns:
a)f(x)=9x+7
Fie x1,x2 a . i , f(x1)=f(x2)
9x1+7=9x2+7
9x1=9x2║:9
x1=x2
Deci din f(x1)=f(x2)=> x1=x2,=>f injectiva
b)f(x)=2-5x
x, x2 f(x1)=f(x2)
2-5x1=2-5x2
-5x1=-5x2
x1=x2
Deci dinn f(x1)=f(x2)=>x1=x2 f injectiva
c)f(x)=7/4-2x
x1,x2 a.i. f(x1)=f(x2)
7/4-2x1=7/4-2x2
-2x1=-2x2║:(-2)
x1=x2
f(x1)=f(x2)=> x1=x2 =>
f injectiva
Explicație pas cu pas: