a)
sinC=1/2=AB/BC
1/2=6/BC⇒BC=12
AC²=BC²-AB²
AC²=144-36
AC²=108
AC=6√3
cosB=AB/BC
cosB=6/12=1/2
tgC=AB/AC
tgC=6/6√3=√3/3
ctgC=AC/AB
ctgC=6√3/6=√3
b) sinB=AC/BC
BC²=AB²+AC²
BC²=144+25
BC²=169
BC=13
sinB=12/13
sinC=AB/BC
sinC=5/13
cosB=AB/BC=5/13
tgC=AB/AC
tgC=5/12
ctgB=AB/AC
ctgB=5/12
sin²B+cos²B=(12/13)²+(5/13)²=(144+25)/169=169+169=1
c)
Intr-un romb diagonalele sunt bisectoare, sunt perpendiculare si se injumatatesc
DB=24√2⇒DO=12√2
mADC=120⇒mADO=60
ΔAOD, mO=90,mADO=60⇒mDAO=30⇒din th 30-60-90 AD=2*DO
AD=24√2
ΔAOD,aplici Pitagora⇒AO²=AD²-DO²
AO²=1152-288
AO²=864
AO=12√6
AC=12√6*2=24√6
P=24√2*4=96√2