Scrieti ca produs de 3 factori diferiti de 1: 
 a)  a³ (a-1)+ a²(a-1)
 b) (a+1)² (a-3) - (a+1) (a+3)
 c) (2b+5)² (4a-1) - (2b+5) (4a-1)
 d) x(-x+1)³ -x(-x+1)² -x(x-1)
 e)(x+1)²(x+1) + (x+1) (x²-1)
 f) (x²+x+1)(x-3)-(x-3)(-x²+1) 
 g) (x+1)³ + (x+1)² - 2(x+1)

 




Răspuns :

1. (a-1)(a³+a²)=a²(a-1)(a+1)
2. (a+1)[(a+1)(a-3)-a-3]=(a+1)(a²-3a-6)
care daca calculezi a doua paranteza nu are 2 radacini 

3. (2b+5)(4a-1)(2b+4)
4. -x(-x+1)³-x(-x+1)²+x(-x+1)=-x(-x+1)(x²-2x+1+x-1+1)=-x(-x+1)(x²-x+1)
5. (x+1)²(x+1+x-1)=2x(x+1)(x+1)
6.(x-3)(x²+x+1+x²-1)=x(x-3)(2x+1)
7.(x+1)(x²+2x+1+x+1-2)=x(x+1)(x+3)