Răspuns:
Explicație pas cu pas:
a) (√2 + 1)² = (√2)²+2·√2·1 +1² = 2+2√2+1 = 3+2√2
b) (√3 + 2)² = (√3)²+2·√3·2+2² = 3+4√3+4 = 7+4√3
c) (√5 + 3)² = (√5)²+2·√5·3+3² = 5+6√3+9 = 14+6√3
d) (4+√6)² = 4²+2·4·√6+(√6)² = 16+8√6+6 = 24+8√6
e) (√2+√7)² = (√2)²+2·√2·√7+(√7)² = 4+2√14+7 = 11+2√14
f) (√8+√5)² = (√8)²+2·√8·√5+(√5)² = 8+2·√2·√5+5 = 13+2√10
g) (2√3+3)² = (2√3)²+2·2√3·3+3² = 12+12√3+9 = 21+12√3
h) (√5+2√10)² = (√5)²+2·√5·2√10+(2√10)² = 5+4·√5·√5·√2+4·10=
= 5+20√2+40 = 45+20√2
i) (3√2+2√3)² = (3√2)²+2·3√2·2√3+(2√3)² = 18+12√6+12 =30+12√6
j) (3√5+2√15)² = (3√5)²+2·3√5·2√15+(2√15)² = 45+12·5·√3+4·15 =
= 45+60√3+60 = 105+60√3
k) (√12+2√27)² = (2√3+2·3√3)² = (8√3)² = 64·3 = 192