Arătați că punctele A(a,2a), B(a,3a), [tex]C(a+ \frac{ \sqrt{3} }{2}, \frac{5}{2}a) [/tex] unde [tex]a≠0\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ [/tex] sunt vârfurile unui triunghi echilateral. Eu am făcut cu formula distantei dintre doua puncte la sistemul de coordonate xOy si mi-a dat AB=a, [tex]AC= \frac{ \sqrt{3+ {a}^{2} }}{2} \\ BC= \frac{ \sqrt{3+ {a}^{2} }}{2} [/tex] Problema e de clasa 9, la geometrie, la lecția cercul trigonometric. Am folosit formula aceasta: [tex]AB= \sqrt{(x_{A}- x_{B})^2+(y_{A}- y_{B})^2}[/tex] Ideea e ca sper sa fie bine cum le-am calculat , dar m-am verificat și ar trebui sa fie totul ok. Cum as putea sa mai fac in continuare? Ce ar trebui sa mai scriu?
P.S: Nu mai scrieți răspunsuri aiurea ca va dau report.