Răspuns :
a)
[tex]2 \sqrt{3} \times ( \sqrt{6} - \sqrt{5} - \sqrt{6} + \sqrt{5} =0. [/tex]
b) 5√2*(√2-√6)-√10+10√3
=√5^2*√2(√2-√6)-√2*√5+√2^2*√5^2*√3
=√10*(√10-√30-1+√30)
=>
[tex] \sqrt{10} \times (10 - 1) = 9 \times \sqrt{10.} [/tex]
c)
[tex]2 \sqrt{12} - 2 \sqrt{2} \times ( \sqrt{6} - \sqrt{5}) - \sqrt{40} = 2 \times ( \sqrt{12} - \sqrt{12} - \sqrt{10} - \sqrt{10}) = 0. [/tex]
d)
[tex] - \sqrt{32} + \sqrt{216} + 3 \times \times \sqrt{3}( \sqrt{6 } - 2 \sqrt{2}) = 9 \times \sqrt{2} - 4 \times \sqrt{2} = 5 \times \sqrt{2}. [/tex]
e) 6-√3/3√3-(2+√3)/2√3-(1+√3)/√3
=
[tex]( - 6 \sqrt{3} - 2 \sqrt{3} - 3 \sqrt{3}) \div 6 \sqrt{3} = - 11 \div 6. [/tex]
f)
[tex]8 \times \sqrt{6}. [/tex]
g)
[tex]2.[/tex]
h)
[tex] \sqrt{5}. [/tex]
i)
[tex]4.[/tex]