piramida patrulatera regulată VABCD are AB=6cm și înălțimea VO=4 cm. calculați :apotema piramidei. înălțimea din D a tetraedrului ADOV, înălțimea din V a tetraedrului ADOV, înălțimea din O a tetraedrului DAOV. ​

Răspuns :

a) VA=VB ⇒tr. AVB este isoscel, ducem VM⊥AB ⇒ VM apotema piramidei, VM este mediana in AVB ⇒ AM=MB, MO linie milocie in ABD ⇒ MO║AD, MO⊥AB

MO este apotema bazei.

MO=AD/2=4 cm

cu pitagora in VOM, VM=√(VO^2+MO^2)=√(16+16)

VM=4√2 cm

b)

ducem OE⊥VM si sa demonstram ca OE⊥(VAB)

observam ca:

OE⊥VM

VM⊥AB

MO⊥AB ⇒ T3P R2 ⇒ OE⊥(VAB) ⇒ d(O;(VAB))=OE

din aria VMO in doua moduri rezulta relatia:

MO x VO=VM x OE

OE=MO x VO/VM=4 x 4/4√2

OE=2√2 cm

acelasi rezultat se obtie observand ca OE este inaltime si mediana in tr. dr.

isoscel VOM si prin urmare mediana OE=VM/2 =2√2 cm

se stie ca mediana din varful drept al unui tr. dr. este jumatate din ipotenuza