Răspuns :
a) 25^10 × 5^32 × 125^5 =
(5^2)^10 × 5^32 × (5^3)^5 =
5^20 × 5^32 × 5^15 =
5^(20 + 32 + 15) =
5^67
b) 9^4 × 27^5 × 3^14 =
(3^2)^4 × (3^3)^5 × 3^14 =
3^8 × 3^15 × 3^14 =
3^(8 + 15 + 14) =
3^37
c) 2^12 × 4^12 × 8^6 =
2^12 × (2^2)^12 × (2^3)^6 =
2^12 × 2^24 × 2^18 =
2^(12 + 24 + 18) =
2^54
a) (5^2)^10 • 5^32 • (5^3)^5
5^20•5^32•5^15=5^67 (se aduna exponenții)
B) (3^2)^4 • (3^3)^5 • 3^14
3^8 • 3^15 • 3^14= 3^37
C) 2^15 • (2^2)^12 • (2^3)^6
2^15 • 2^14 • 2^18=2^47
SUCCES
5^20•5^32•5^15=5^67 (se aduna exponenții)
B) (3^2)^4 • (3^3)^5 • 3^14
3^8 • 3^15 • 3^14= 3^37
C) 2^15 • (2^2)^12 • (2^3)^6
2^15 • 2^14 • 2^18=2^47
SUCCES