Cât ii (0,75 + 2/3) •7/17+0,1•5^-1]:0,(3)

Răspuns :

Răspuns:  [tex]\boxed{\bf \dfrac{181}{100}} \:\:\:\: sau \:\:\:\:\boxed{\bf 1\dfrac{81}{100}}[/tex]

Explicație pas cu pas:

[tex]\bf \Big[\Big(0,75+\dfrac{2}{3}\Big)\cdot \dfrac{7}{17} + 0,1 \cdot 5^{-1}\Big]:0,(3)=[/tex]

[tex]\bf \Big[\Big(\dfrac{75}{100} +\dfrac{2}{3}\Big)\cdot \dfrac{7}{17} + \dfrac{1}{10} \cdot \dfrac{1}{5^{1}}\Big]:\dfrac{3}{9} =[/tex]

[tex]\bf \Big[\Big(\dfrac{\not75}{\not100} +\dfrac{2}{3}\Big)\cdot \dfrac{7}{17} + \dfrac{1}{10} \cdot \dfrac{1}{5}\Big]:\dfrac{\not3}{\not9} =[/tex]

[tex]\bf \Big[\Big(\dfrac{3}{4} +\dfrac{2}{3}\Big)\cdot \dfrac{7}{17} + \dfrac{1}{50}\Big]:\dfrac{1}{3} =[/tex]

[tex]\bf \Big[\Big(\!{^{^{^{^{^{^{\displaystyle 3)}}}}}}}\!\!\!\dfrac{3}{4} +\!{^{^{^{^{^{^{\displaystyle 4)}}}}}}}\!\!\!\dfrac{2}{3}\Big)\cdot \dfrac{7}{17} + \dfrac{1}{50}\Big]\cdot \dfrac{3}{1} =[/tex]

[tex]\bf \Big[\Big(\dfrac{3\cdot3}{12} +\dfrac{2\cdot4}{12}\Big)\cdot \dfrac{7}{17} + \dfrac{1}{50}\Big]\cdot 3 =[/tex]

[tex]\bf \Big[\Big(\dfrac{9+8}{12} \Big)\cdot \dfrac{7}{17} + \dfrac{1}{50}\Big]\cdot 3 =[/tex]

[tex]\bf \Big(\dfrac{17}{12} \cdot \dfrac{7}{17} + \dfrac{1}{50}\Big)\cdot 3 =[/tex]

[tex]\bf \Big(\dfrac{\not17}{12} \cdot \dfrac{7}{\not17} + \dfrac{1}{50}\Big)\cdot 3 =[/tex]

[tex]\bf \Big(\dfrac{1}{12} \cdot \dfrac{7}{1} + \dfrac{1}{50}\Big)\cdot 3 =[/tex]

[tex]\bf \Big(\dfrac{7}{12} + \dfrac{1}{50}\Big)\cdot 3 =[/tex]

[tex]\bf \dfrac{7}{12} \cdot 3 + \dfrac{1}{50}\cdot 3 =[/tex]

[tex]\bf \dfrac{7}{\not12} \cdot \not3 + \dfrac{1}{50}\cdot 3 =[/tex]

[tex]\bf \dfrac{7}{4} \cdot 1 + \dfrac{3}{50} =[/tex]

[tex]\bf \dfrac{7}{4} + \dfrac{3}{50} =[/tex]

[tex]\bf \!{^{^{^{^{^{^{\displaystyle 25)}}}}}}}\!\!\!\dfrac{7}{4} + \!{^{^{^{^{^{^{\displaystyle 2)}}}}}}}\!\!\!\dfrac{3}{50} =[/tex]

[tex]\bf \dfrac{7\cdot 25}{100} + \dfrac{3\cdot2}{100} =[/tex]

[tex]\bf \dfrac{175}{100} + \dfrac{6}{100} =[/tex]

[tex]\boxed{\bf \dfrac{181}{100}} \:\:\:\: sau \:\:\:\:\boxed{\bf 1\dfrac{81}{100}}[/tex]

==pav38==