Calculati:
(x/x+1)^2+(x/x-1)^2=6


Răspuns :

Explicație pas cu pas:

[tex]( \frac{x }{x + 1} ) {}^{2} + ( \frac{x}{x + 1} ) {}^{2} = 6[/tex]

[tex] \frac{ {x}^{2} }{ {(x + 1)}^{2} } + \frac{ {x}^{2} }{ {(x + 1)}^{2} } = 6[/tex]

[tex] \frac{ {2x}^{2} }{ {(x + 1)}^{2} } = 6[/tex]

[tex] \frac{ {2x}^{2} }{ {x}^{2} + {1}^{2} } = 6[/tex]

[tex] \frac{ {2x}^{2} }{ {x}^{2} + 1 } = 6[/tex]

Inmultesti toata relatia cu x la a doua+1

[tex] {2x}^{2} = 6( {x}^{2} + 1)[/tex]

[tex] {2x}^{2} = {6x}^{2} + 6[/tex]

[tex] {2x}^{2} - {6x}^{2} = 6[/tex]

[tex] {4x}^{2} = 6[/tex]

[tex] {x}^{2} = 6 \div 4[/tex]

[tex] {x}^{2} = 1.5[/tex]

[tex]x = \sqrt{1.5} [/tex]

[tex]x = \frac{ \sqrt{150} }{ \sqrt{100} } [/tex]

[tex]x = \frac{5 \sqrt{6} }{10} [/tex]

[tex]x = \frac{ \sqrt{6} }{2} [/tex]

Cred ca mi-am dat gtesit da asta este...