1. x^{2} = 1 +3 +5 +...+ 101

2. 6(x-1)^{2} = (2 + \sqrt10 ) * \sqrt14 -2\sqrt40



Răspuns :

1) Metoda 1. 
[tex]1+3+5+...+101= \frac{102\cdot51}{2}=51^2 [/tex] ⇒ [tex]x=51[/tex]
Metoda 2.
Avem formula [tex]1+3+5+...+(2n-1)=n^2[/tex]
⇒ [tex]2x-1=101 \\ x=51[/tex]
2) [tex]6(x-1)^2=(2+ \sqrt{10})\cdot \sqrt{14}-2 \sqrt{40} \\ 6(x-1)^2=2 \sqrt{14}+\sqrt{140}-2 \sqrt{40} \\ 6(x-1)^2=2( \sqrt{14}+ \sqrt{35}- \sqrt{40}) \\ 3(x-1)^2=\sqrt{14}+ \sqrt{35}- \sqrt{40} [/tex]
Mă opresc aici. Scrie-mi cerința mai clar, te rog.