Răspuns :
Răspuns:
1+3+5+...+(2n-1)=n²
ADUI SI SCAZI in acelasi timp 2+4+6+...+2n
[1+2+3+4+5+6+...+(2n-1)+2n]-(2+4+6....+2n)=
Paranteza dreapta e Suma Gaus cu 2n termeni
2n(2n+1)/2-2(1+2+3+...+n)=
n(2n+1)-2n*(n+1)/2=
2n²+n-n²-n=n²
Explicație pas cu pas:
1+3+5+.....+(2n-1)=
[ 1+2+3+4+....(2n-1) ]-[2+4+6+....+(2n-2)]=
[ 1+2+3+4+....(2n-1) ]-2[1+2+3+...(n-1)]=
urmeaza formula : suma a n nr consecutine este n(n+1)/2
deci
2n(2n-1) / 2 - n(n-1)=
n( 2n-1-n+1)= n*n=n^2