Răspuns :
Răspuns:
Notam cu sn = 1/2+1/2²+1/2²+...+1/2^n seria progresiei geometrice 1/2^i, i∈[1,n]
Inmultim cu 2 stanga/dreapta:
2sn = 2/2+2/4+2/8+...2/2^n = 1+1/2+1/4+1/8+...+1/2^(n-1) = 1+sn-1/2^n
Reducand sn in stanga si in dreapta, rezulta ca sn = 1 - 1/2^n, deci
1 + s2009 = 1 + 1 - 1/2^2009 = 2 - 1/2^2009, care ∈ (1,2)
Răspuns:
Explicație pas cu pas:
s=1+1/2+1/2²+1/2³+...+1/2²⁰⁰⁹
Termenii sumei sunt in progresie geometrica asa ca folosesti formula sumei
Sₙ=a₁*(qⁿ⁺¹-1)/(1-q) unde ratia q=1/2 si n=2009
S₂₀₀₉=1*(1-1/2²⁰¹⁰)/(1-1/2)=(1-1/2²⁰¹⁰)/(1/2)=
2(1-1/2²⁰¹⁰)
Observi ca paranteza este cuprinsa intre 1/2 si 1
Notam cu x paranteza
1/2<x<1
S₂₀₀₉=2x ∈(1 2)