Răspuns :
Răspuns:
·
Explicație pas cu pas:
E=2·3²ⁿ⁺⁴·7ⁿ-3²ⁿ⁺¹·7ⁿ⁺²+4·9ⁿ·7ⁿ⁺²-63ⁿ⁺¹=2·3²ⁿ·3⁴·7ⁿ-3²ⁿ·3¹·7ⁿ·7²+4·9ⁿ·7ⁿ·7²-63ⁿ⁺¹=2·81·9ⁿ·7ⁿ-3·49·3²ⁿ·7ⁿ+4·49·9ⁿ·7ⁿ-63ⁿ=162·63ⁿ-147·63ⁿ+196·63ⁿ-63ⁿ·63= 63ⁿ·(162-147+196-63)=63ⁿ·148=63ⁿ·4·37, ⇒ E este divizibil cu 37.
p.s. 3²ⁿ=(3²)ⁿ=9ⁿ, iar 9ⁿ·7ⁿ=(9·7)ⁿ=63ⁿ
E = 2·3²ⁿ⁺⁴ ·7ⁿ- 3²ⁿ⁺¹ ·7ⁿ⁺² + 4 · 9ⁿ·7ⁿ⁺²- 63ⁿ⁺¹ : 37
E = 2·3²ⁿ⁺⁴ ·7ⁿ- 3²ⁿ⁺¹ ·7ⁿ⁺² + 4 · (3²)ⁿ·7ⁿ⁺²- (9·7)ⁿ⁺¹ : 37
E = 2·3²ⁿ⁺⁴ ·7ⁿ- 3²ⁿ⁺¹ ·7ⁿ⁺² + 4 · 3²ⁿ·7ⁿ⁺²- 9ⁿ⁺¹·7ⁿ⁺¹ : 37
E = 2·3²ⁿ⁺⁴ ·7ⁿ- 3²ⁿ⁺¹ ·7ⁿ⁺² + 4 · 3²ⁿ·7ⁿ⁺²- (3²)ⁿ⁺¹·7ⁿ⁺¹ : 37
E = 2·3²ⁿ⁺⁴ ·7ⁿ- 3²ⁿ⁺¹ ·7ⁿ⁺² + 4 · 3²ⁿ·7ⁿ⁺²- 3²ⁿ⁺²·7ⁿ⁺¹ : 37
E = 2·3²ⁿ·3⁴ ·7ⁿ- 3²ⁿ·3¹ ·7ⁿ·7² + 4 · 3²ⁿ ·7ⁿ·7²- 3²ⁿ·3²·7ⁿ·7¹ : 37
E = 3²ⁿ·7ⁿ·( 2·3⁴ - 3¹·7²+ 4·7²- 3²·7¹) : 37
E = 3²ⁿ·7ⁿ·( 2·81 - 3·49+ 4· 49- 9·7): 37
E = 3²ⁿ·7ⁿ· ( 162 - 147+196- 63): 37
E = 3²ⁿ·7ⁿ· (15+196- 63) : 37
E = 3²ⁿ·7ⁿ·( 211- 63) : 37
E = 3²ⁿ·7ⁿ· 148 : 37
E = 3²ⁿ·7ⁿ· 4·37 : 37, dacă 37: 37, at. E = 3²ⁿ·7ⁿ· 4·37 : 37