Repede ofer 28 de puncte si coroana.Punctele A,B,C sunt coliniare in aceasta ordine,AB=2cm,BC=8cm si DB perpendicular AC,DB=4cm.
a)Calculati sin unghiul ADB + sin unghiul BDC.
b)Aflati perimetrul triunghiului ADC.​


Răspuns :

In ΔDBC, m(∡DBA) = 90° => AD²=AB²+BD²

=> AD²= 20

=>AD= 2√5

sin(∡ADB) = [tex]\frac{AB}{AD}[/tex]

=>sin(∡ADB) = [tex]\frac{2}{2\sqrt{5} }[/tex]

=>sin(∡ADB) = [tex]\frac{\sqrt{5} }{5}[/tex]

In Δ BDC, m (∡DBC) = 90° => DC²= DB²+BC²

=>DC²=80

=>DC=4[tex]\sqrt{5}[/tex]

sin(∡BDC) = [tex]\frac{BC}{DC}[/tex]

=>sin(∡BDC)=[tex]\frac{8}{4\sqrt{5} }[/tex]

=>sin(∡BDC) = [tex]\frac{2\sqrt{5} }{5}[/tex]

sin(∡ADB)+sin(∡BDC)= [tex]\frac{3\sqrt{5} }{5}[/tex]

b) P Δ ADC = 2√5+4√5+10 = 6√5 + 10

=2(3√5+5) cm