x-y=162, rezultatul este pozitiv, deci rezulta ca x>y
[tex] \frac{1}{4} \times x = \frac{1}{3} \times y + 36[/tex]
[tex] \frac{x}{4} = \frac{y}{3} + 36[/tex]
[tex]x = (\frac{y}{3} + 36) \times 4[/tex]
[tex]x = \frac{4y}{3} + 144[/tex]
Înlocuim :
[tex]x - y = 162[/tex]
[tex] (\frac{4y}{3} + 144) - y = 162[/tex]
[tex] \frac{4y}{3} + 144 = 162 + y[/tex]
[tex] \frac{4y}{3} = 162 + y - 144[/tex]
[tex] \frac{4y}{3} = 18 + y[/tex]
=>
[tex]4y = (18 + y) \times 3[/tex]
[tex]4y = 54 + 3y [/tex]
[tex]y = 54[/tex]
---------
Înlocuim :
[tex]x = \frac{4y}{3} + 144[/tex]
[tex]x = \frac{54 \times 4}{3} + 144[/tex]
[tex]x = \frac{216}{3} + 144[/tex]
[tex]x = 72 + 144[/tex]
[tex]x = 216[/tex]
------
Verificare:
x-y=162
216-54=162
162=162