-8.
Dacă 2^x + 2^x+1 =1536, atunci valoarea expresiei x^2-2x este egală cu:
a. 56
b. 63
c. 72
d. 100


Răspuns :

Răspuns:

63

Explicație pas cu pas:

2ˣ+2ˣ⁺¹ = 1536  <=>

2ˣ+2·2ˣ = 1536 <=>

2ˣ·(1+2) = 1536 <=>

3·2ˣ = 1536   I :3  =>

2ˣ = 512  <=>

2ˣ = 2⁹  => x = 9

x² - 2x = 9² - 2·9  = 81 - 18 = 63

Răspuns:

2^x + 2^x+1 =1536

2^x(1+2)=1536

2^x × 3 =1536 /:3

2^x=512

2^x = 2^9

x=9

x^2 - 2x=

9^2 - 2×9=

81-18=

63

Explicație pas cu pas: