Răspuns:
pc. b)
Explicație pas cu pas:
[tex]\frac{x+1}{2} +\frac{x+2}{3} +...+\frac{x+100}{101} =100\\ \\ \frac{x+1}{2} +\frac{x+2}{3} +...+\frac{x+100}{101}-100=0\\\\ \frac{x+1}{2} -1+\frac{x+2}{3} -1+...+\frac{x+100}{101}-1=0\\ \\ \frac{x-1}{2} +\frac{x-1}{3} +...+\frac{x-1}{101}=0\\ \\ (x-1)(\frac{1}{2} +\frac{1}{3} +...+\frac{1}{101})=0\\ \\ \frac{1}{2} +\frac{1}{3} +...+\frac{1}{101}\neq 0[/tex]
⇒ x - 1 = 0
⇒ x = 1