Răspuns :
Răspuns:
Explicație pas cu pas:
Sn=1/(1⋅2)+1/(2⋅3)+1/(3⋅4)+...+1/n(n+1)
1/n(n+1)=1/n-1/(n+1)
Sn=1/1-1/2+1/3-1/2+1/4-1/3+.......+1/(n-1)-1/n+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
n/(n+1)>111/112 n>111 ⇒ n=112 112/113>111/112
Rasp:C
Răspuns:
Explicație pas cu pas:
Sn=1/(1⋅2)+1/(2⋅3)+1/(3⋅4)+...+1/n(n+1)
1/n(n+1)=1/n-1/(n+1)
Sn=1/1-1/2+1/3-1/2+1/4-1/3+.......+1/(n-1)-1/n+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
n/(n+1)>111/112 n>111 ⇒ n=112 112/113>111/112
Rasp:C