Răspuns :
Răspuns:
Explicație pas cu pas:
[tex]\frac{1}{1*2} +\frac{1}{2*3} +\frac{1}{3*4} +...+\frac{1}{n(n+1)} =\\\frac{2-1}{1*2} +\frac{3-2}{2*3} +\frac{4-3}{3*4} +...+\frac{n+1-n}{n(n+1)} =\\[/tex]
[tex]1-\frac{1}{2} +\frac{1}{2} -\frac{1}{3} +...+\frac{1}{n} -\frac{1}{n+1} =[/tex]
[tex]=1-\frac{1}{n+1} =\frac{n}{n+1}[/tex]
[tex]S_{n} =\frac{n}{n+1} >\frac{111}{112}[/tex]
trebuie ca n>111, deci n=112