se dau numerele a=2+2^3+2^5+2^7+...+2^2017+2^2019 și b=1+2^2+2^4+2^6+...+2^2016+2^2018. arătați ca numărul x=a+b+1 este un pătrat perfect

va rog mult
dau coroana


Răspuns :

Răspuns:

Se folosește o formulă de calcul prescurtat

Vezi imaginea Ioanmatei

[tex]a = 2+2^3+2^5+2^7+...+2^{2017}+2^{2019}\\ b= 1+2^2+2^4+2^6+...+2^{2016}+2^{2018}[/tex]

[tex]\begin{aligned}a+b &=1+2+2^2+2^3+2^4+...+2^{2018}+2^{2019}\\ &= (2-1)(1+2+2^2+2^3+2^4+...+2^{2018}+2^{2019}) \\ &=2+2^2+2^3+...+2^{2019}+2^{2019}+2^{2020}-(a+b)\\ &=1+2+2^2+...+2^{2019}+2^{2020}-1-(a+b)\\ &= (a+b)+2^{2020}-1-(a+b)\\ &= 2^{2020}-1 \end{aligned}[/tex]

[tex]x = a+b+1 =2^{2020}-1+1 = 2^{2020} = (2^{1010})^2\,\,\,\checkmark[/tex]