In triunghiul ABC cu AB= 15 cm; AC = 30 cm si ;BC=25 cm se iau punctele M apartine AB astfel incat AM/MB=3/2 si N apartine AC astfel incat MN paralel BC. Aflati perimetrul triunghiului AMN si perimetrul MNCB.

Repede!!​


Răspuns :

Răspuns:

12cm; 58cm.

Explicație pas cu pas:

AB=15, AC=30, BC=25. AM/MB=3/2, ⇒AM/3=MB/2=k, coeficient de proportionalitate. Atunci AM=3k, MB=2k, ⇒3k+2k=15, ⇒5k=15, k=15:5=3. Deci AM=3·3=9;  MB=2·3=6cm.

Deoarece MN║BC, ⇒ΔABC~ΔAMN, deci laturile lor sunt proportionale, ⇒AB/AM=AC/AN=BC/MN. Inlocuind, ⇒15/9=30/AN=25/MN, ⇒15·AN=9·30 |:15, ⇒AN=9·2=18.

Din 15/9=25/MN, ⇒15·MN=9·25, ⇒MN=(9·25)/15=15

Atunci P(AMN)=AM+AN+MN=9+18+15=42cm

P(MNCB0=MN+NC+CB+BM. NC=AC-AN=30-18=12cm.

Deci P(MNCB0=MN+NC+CB+BM=15+12+25+6=58cm

Vezi imaginea Boiustef