Răspuns :
Răspuns:
Explicație pas cu pas:
f(x)=x²-4
f(1+√2)=1+2+2√2-4=2√2-1=
f(1-√2)=1+2-2√2-4=-2√2-1
a)Suma=f(1+√2)+f(1-√2)=2√2-1-2√2-1=-2 ∈Z
b)Produsul=(2√2-1)×(-1)(2√2+1)=-(4×2-1)=-7 ∈Z
a) f(1+[tex]\sqrt{2}[/tex])= [tex](1+\sqrt{2} )^{2}[/tex]-4
= 1+[tex]2\sqrt{2}[/tex]+2-4
= [tex]2\sqrt{2}[/tex]-1
f(1-[tex]\sqrt{2}[/tex])= [tex](1-\sqrt{2} )^{2}[/tex]-4
= 1-[tex]2\sqrt{2}[/tex]+2-4
= [tex]-2\sqrt{2}[/tex]-1
f(1+[tex]\sqrt{2}[/tex])+f(1-[tex]\sqrt{2}[/tex])= [tex]2\sqrt{2} -1 + ( -2\sqrt{2}- 1 )[/tex]
= [tex]2\sqrt{2}-2\sqrt{2}[/tex]+(-1)-1
= -1(-1)
= -2 ∈ Z⇒f(1+[tex]\sqrt{2}[/tex])+f(1-[tex]\sqrt{2}[/tex]) ∈ Z
b)f(1+[tex]\sqrt{2}[/tex])·f(1-[tex]\sqrt{2}[/tex])= [tex](2\sqrt{2} -1)[/tex]·([tex]-2\sqrt{2} -1[/tex])
= -8-[tex]2\sqrt{2}[/tex]+[tex]2\sqrt{2}[/tex]+1
= -7 ∈ Z⇒f(1+[tex]\sqrt{2}[/tex])·f(1-[tex]\sqrt{2}[/tex]) ∈ Z
Sper că te-am ajutat!